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Abstract

In the one-sided assignment game any two agents can form a partnership and decide

how to share the surplus created. Thus, in this market, an outcome involves a matching

and a vector of payo¤s. Contrary to the two-sided assignment game, stable outcomes

often fail to exist in the one-sided assignment game. We introduce the idea of tradewise-

stable (t-stable) outcomes: they are individually rational outcomes where no matched

agent can form a blocking pair with any other agent, neither matched nor unmatched.

We propose the set of constrained-optimal t-stable outcomes, which is the set of the

maximal elements of the set of t-stable outcomes, as a natural solution concept for

this game. We prove several properties of t-stable outcomes and constrained-optimal
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t-stable outcomes. In particular, we show that each element in the set of constrained-

optimal t-stable payo¤s provides the maximum surplus out of the set of t-stable payo¤s,

the set is always non-empty and it coincides with the core when the core is non-empty.

The general principle of collective rationality on which our theory is based presupposes

that a player only engages in cooperation that is optimal for him/her. That is, whatever

the dynamics that underlie the pairwise interactions, any negotiation process in this

environment should always arrive to an outcome where every trade is optimal (and

stable) for the players involved.

JEL Classi�cation numbers: C78, D78

Keywords: matching, assignment game, stability, core, tradewise-stable, constrained-

optimal.
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1 Introduction

Interactions among people, �rms, and many other agents, often take place in terms of two-

agent partnerships. A seller and a buyer meet to realize a transaction that is pro�table for

both; a �rm and a worker sign a contract that bene�ts both; two �rms establish an R&D

collaboration agreement; or two roommates agree to share the cost of an apartment. Some of

these partnerships take place between pairs of agents from two clearly distinct populations:

there is a set of buyers and a set of sellers, as there is a set of �rms and a set of workers.

A buyer, for instance, is either matched with a seller or he/she does not buy, but he/she

is not interested in forming a partnership with another buyer. In other environments, pairs

are made between agents who all belong to the same set: a set of innovative �rms or a set

of tenants. A �rm, for instance, may be matched to any other �rm or it can do R&D on its

own.

Two-sided matching models, pioneered by Gale and Shapley (1962) (the marriage and the

college admission models) and Shapley and Shubik (1972) (the assignment game), provide

an excellent framework to study pairwise interactions in environments where the players

belong to two disjoint sets and interact by pairs. Moreover, the set of stable outcomes for

the one-to-one two-sided matching models has a very nice algebraic structure and appealing

properties. In particular, this set, the set of pairwise-stable outcomes and the core coincide

and they are always non-empty.

In the present paper, we relax the assumption of two sides in the assignment game of

Shapley and Shubik and study environments where the agents belong to a single population,

and not necessarily to two distinct sets. It is assumed that the players can freely communicate

with each other and preferences over outcomes, as well as the rules that govern any coalitional

interaction, are common knowledge. The main activity of these agents is to form pairs, whose

members endogenously decide on the sharing of the surplus created by the partnership.

Every agent can form one partnership at most. Thus, an outcome of our model involves

both a one-to-one matching (that is, a partition of the population in either pairs of agents

or singletons) and a vector of payo¤s (that is, a sharing of the joint surplus for any two-

agent partnership). We will refer to this game as the �one-sided assignment game.�1 As

in the one-to-one two-sided matching models, the core, the set of stable payo¤s and the

1It is called �the partnership formation problem� in Talman and Yang (2011) and Andersson et al.

(2014), �the TU roommate game�in Eriksson and Karlander (2000), and simply �the roommate problem�

in Chiappori et al. (2014).

3



set of pairwise-stable payo¤s coincide in the one-sided assignment game (Proposition 1).

Furthermore, any optimal matching2 is compatible with any stable payo¤ and every matching

in a stable outcome is optimal (Sotomayor, 2005a and 2009a, and Talman and Yang, 2011).

Consequently, every unmatched agent at a stable outcome has a zero payo¤ at every stable

outcome. However, in the one-sided assignment game the core may be empty (Example 1).3

We provide a solution concept for the one-sided assignment that is always non-empty.

The general principle of collective rationality on which our theory is based presupposes that

a player only engages in cooperation that is optimal for him/her. That is, if an agreement

between the members of a partnership is reached, then these agents should be sure that

more favorable options cannot be obtained elsewhere. Therefore, whatever the dynamics

that underlie the pairwise interactions, any negotiation process in this environment should

always arrive to an outcome where every trade is optimal (and stable) for the players involved.

Any instability (if any) of this outcome should be caused by non-trading agents. We call

such an outcome a tradewise-stable (t-stable) outcome. An outcome (that is, a matching and

a vector of payo¤s) is t-stable if no matched agent can form a blocking pair with any other

agent, neither matched nor unmatched. In particular, in a t-stable outcome the set of active

players, that is, those players who are matched, is a stable set.

Furthermore, our solution concept requires that the number of trades accomplished is

the maximum number that can occur at a t-stable outcome. Thus, it should not be possible

to increase the set of active players by adding new trades without violating the optimal

behavior principle. We can say that such outcomes are as stable as possible. We call them

constrained-optimal tradewise-stable outcomes (optimal t-stable outcomes for short) because

they are Pareto optimal among all t-stable outcomes. Clearly, any core outcome is an optimal

t-stable outcome. However, there are t-stable outcomes that are not core outcomes because

they are blocked by unmatched players.

Within this context, the game theoretic prediction is that an optimal t-stable outcome will

occur. If, given such an outcome, no additional interaction can bene�t the agents involved,

a core outcome is reached, so the traditional game theoretic prediction is maintained. If

there are some pro�table interactions, but they require that some of the agents involved do

not behave optimally, the only conclusion we can arrive is that the new outcome is not an

2A matching is optimal if it maximizes the total payo¤ in the set of feasible matchings.
3Gale and Shapley (1962) show that stable matchings may also not exist in the one-sided discrete model,

that is, when utility is not transferable. The existence problem for that model was called by these authors

�the roommate problem.�
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equilibrium.

Thus, we provide a solution concept, the set of optimal t-stable outcomes, which is

weaker than the core concept and that can be used as a vehicle to identify the outcomes

that may occur in this decentralized setting. We will show that the set of active players

of an optimal t-stable outcome is endowed with at least one coalitional structure. Such a

coalitional structure indicates some possible ordering in the formation of the active coalitions

of this outcome. The history that underlies the formation of an outcome that is as stable as

possible can be presumed from that ordering.4

More speci�cally, given an optimal t-stable outcome �, there is a coalitional structure of

the set of active players T (�), which constitutes the stable part of �, given by some partition

(C1; : : : ; Ck) of T (�), where every partition set Ch, with h = 1; : : : ; k, has the following

property: C1 [ : : : [ Ch is a stable set and if an agent belongs to Ch, then his/her payo¤

is greater than or equal to his/her gain from trade with any agent not in C1 [ : : : [ Ch.

Furthermore, no proper subset of Ch has this property. From that structure (it may exist

more than one) we can presume that the allocation � is formed along k steps of some

negotiation process, operating sequentially. In this partnership formation process, which

starts with the outcome where every player stands alone, the set Ch is formed at step h, for

all h = 1; : : : ; k, and it results from the pairwise interactions of current non-trading agents,

under the premise of optimal cooperative behavior. As a consequence of this principle, the

transactions done at each step h are maintained at the subsequent steps, if any, and the

non-trading agents at this stage have no willingness to trade with any subset of players who

became active at this or any previous step. Therefore, the stable part of the outcome �h,

which occurs at step h, is C1 [ : : : [ Ch and the remaining players stand alone at this step.

The optimal t-stable allocation � occurs when the last term of the sequence (C1; : : : ; Ck) is

formed. Thus, we obtain a sequence of outcomes, (�1; �2; �3; : : : ; �k = �), which are t-stable

and where every term �h is an extension of the previous terms.

Tradewise-stable outcomes share properties of core outcomes but not necessarily all of

them. More speci�cally, t-stable outcomes are somehow �internally stable.�However, they

might not be �externality stable,� in the sense that there may be a pair of agents not

involved in any partnership that could have an incentive to deviate. As it is clear from the

4The consideration of the dynamics that may underlie the coalitional interactions among individuals

would be a nice exercise. However, the modelling of these dynamics is mathematically untreatable. The

existence of a coalition structure for the active coalitions makes the precise model for the dynamics less

necessary.
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de�nition, all core outcomes are t-stable outcomes. But the set of t-stable outcomes is always

non-empty, since the allocation where everyone is non-trading and receives a zero payo¤ is

t-stable.

By its de�nition, a t-stable allocation is constrained-optimal if and only if it cannot be

extended to another t-stable allocation. Indeed, we prove that a t-stable allocation is as

stable as possible if and only it is not weakly dominated, via the grand coalition, by any

other t-stable allocation. An optimal t-stable payo¤ is identi�ed with a maximal element

of the set of t-stable payo¤s (which is proved to be a non-empty compact set), under the

partial order relation induced from that of the Euclidean space where this set is immersed.

Then, optimal t-stable payo¤s always exist. Hence, independently of the emptiness or the

non-emptiness of the core, we can always predict that only optimal t-stable allocations will

occur and any optimal t-stable allocation may occur.

We prove that the set of active players of every t-stable allocation, not necessarily optimal,

also has a coalitional structure as described above. Then, it is intuitive that the allocation

may be reached at some step of a negotiation process, a process that always culminates with

an optimal tradewise allocation. This intuition is con�rmed by Proposition 6 that asserts

that every t-stable allocation can be extended to an optimal t-stable allocation. In particular,

when the core exists, every t-stable allocation can be extended to a core allocation.

Additionally, we prove that the set of optimal t-stable outcomes always has a structure

similar to that of the set of core outcomes. Indeed, every optimal t-stable outcome provides

the maximum total surplus among all t-stable outcomes and no other t-stable outcome can

achieve this level of total surplus. Thus, the matchings that are compatible with optimal

t-stable outcomes are �quasi-optimal.�Furthermore, they are part of an optimal matching.

On the other hand, the only t-stable allocations compatible with an optimal matching are the

corewise-stable payo¤s.

Moreover, as the corewise-stable outcomes, each quasi-optimal matching is compatible

with any optimal t-stable payo¤ . Therefore, the set of optimal t-stable outcomes is the

Cartesian product of the set of quasi-optimal matchings and the set of optimal t-stable

payo¤s. Consequently, if an agent is unmatched at some optimal t-stable allocation, then he

gets a zero payo¤ at every optimal t-stable allocation.

Since an optimal t-stable allocation is as stable as possible then, by the de�nition of such

allocation, it has the same set of blocking pairs. Therefore, every blocking pair of an optimal

t-stable allocation is unmatched at every optimal t-stable allocation. As a consequence of the
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fact that every t-stable allocation is extended by some optimal t-stable allocation, it can be

concluded that every blocking pair of an optimal t-stable allocation is unmatched at every

t-stable allocation.

Our central result states that the set of optimal t-stable allocations coincides with the

core, when this set is non-empty (Theorem 1). Moreover, if an optimal t-stable allocation

is not in the core, then no optimal t-stable allocation is in the core and this set is empty.

Therefore, if the negotiation process leads to an unstable outcome, which is as stable as

possible, then the core is empty.

In sum, the main feature of our solution concept is that it proposes the core when this

set is not empty and, when the core is empty, it recommends a set of payo¤s as stable as

possible that satis�es properties that are similar to the core.

Few papers have studied the one-sided assignment game. Necessary and su¢ cient con-

ditions for the existence of the core using linear programming are obtained by Talman and

Yang (2011). Erikson and Karlander (2000) use graph theory to provide a characterization

of the core, and Klaus and Nichifor (2010) provide some properties of this set, when it is

not empty. Chiappori et al. (2014) show that stable matchings exist when the economy

is replicated an even number of times by �cloning�each individual. Finally, Andersson et

al. (2014) propose a dynamic competitive adjustment process that either leads to a stable

outcome or disproves the existence of stable outcomes.

The idea of the partnership formation process that leads to an optimal t-stable outcome

has some similarities with the �paths to stability�proposed by Roth and Vande Vate (1990).

They analyze the marriage market and show that, starting from an arbitrary matching, there

always exists a process of myopic blocking pairs that leads to a stable matching. Klaus and

Pagot (2015) show that the existence of such paths to stability is not guaranteed in the

assignment game and provide a necessary and su¢ cient condition for the existence. In

contrast to the paths to stability that have been considered in various contexts, each step

in our partnership formation processes may involve more than one blocking pair. But every

single step in the process produces an outcome with nice properties, as it is a t-stable

outcome.

The concept of tradewise-stable outcome is an extension of the concept of �simple out-

come,� introduced in Sotomayor (1996) for the marriage model, and it is a translation of

the concept of a �simple outcome,� de�ned in Sotomayor (2005), for the housing market

of Shapley and Scarf (1974), with strict or non-strict preferences. Both papers provide a
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non-constructive and very short proof, which only uses elementary combinatorial arguments,

of the existence of the core. Still in environments without transfers, the notion of a simple

outcome was used in Sotomayor (1999) for a discrete many-to-many matching model with

substitutable and not-necessarily strict preferences, in Sotomayor (2004) where an implemen-

tation mechanism for the discrete many-to-many matching model is provided, in Sotomayor

(2011) to characterize the set of Pareto-stable matchings in the marriage market and (if the

set of stable matchings is not empty) in the discrete roommate model, and in Wu and Roth

(2018) for the college admission model. An adaptation of the concept of simple matching

was used in Sotomayor (2000) for a uni�ed two-sided matching model, due to Eriksson and

Karlander (2000), which includes the marriage and the assignment model, and in Sotomayor

(2018) for the two-sided assignment game of Shapley and Shubik (1972). Finally, Sotomayor

(2019) introduces the idea of t-stability for one of the sides of the market and provides a

framework to treat conjointly stable and instable allocation structures.

The rest of the paper is organized as follows. Section 2 introduces the framework and

states some preliminary results for the core. Section 3 introduces the t-stable outcomes and

provides some of their properties. Section 4 analyzes the set of optimal t-stable outcomes

and presents our results on this set. In section 5, we introduce and discuss a dynamique

partnership formation process that ends with an optimal t-stable outcome. In section 6, we

prove the links between the set of optimal t-stable outcomes and the set of corewise-stable

outcomes. The �nal remarks are given in section 7. An Appendix includes several lemmas

that will be used in the proofs of the results in the main text.

2 Framework and preliminaries

2.1 The framework

The description of the one-sided assignment game follows the one given in Roth and So-

tomayor (1990) for the case with two sides, with the appropriate adaptations.

There is a �nite set of players, N = f1; 2; :::; ng. Associated with each partnership

fi; jg there is a non-negative real number afi;jg which will be denoted aij. The number aij
represents the surplus that players i and j generate if they form a partnership.

We can represent the environment as a game in coalitional function form (N; v) with side

payments determined by (N; a). In this game, the worth v(i; j)5 of a two-player coalition

5For notational convenience, we write v(i; j) rather than v(fi; jg).
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fi; jg is given by aij. We will de�ne v(i) � aii � 0 for all i 2 N . The worth of larger coalitions

is entirely determined by the worth of the pairwise combinations that the coalition members

can form. That is, v(S) = maxfv(i1; j1)+ v(i2; j2)+ :::+ v(ik; jk)g for arbitrary coalitions S,

where the maximum is taken over all sets fi1; j1g; :::; fik; jkg of two-player disjoint coalitions

in S.6

Thus, the rules of the game are that any pair of agents fi; jg can together obtain aij,

and any larger coalition is valuable only insofar as it can organize itself into such pairs. The

members of any coalition may divide their collective worth among themselves in any way

they like.

We might think of the two-sided �Assignment Game�of Shapley and Shubik (1972) as

a particular case of our model. In the assignment game, there are two disjoint sets P and

Q and a pair of players can generate a surplus only if each belongs to a di¤erent set. Thus,

our model corresponds to an assignment game when N = P [Q, P \Q = ?, and v(S) = 0

if S contains only agents of P or only agents of Q.

We will represent the set of partnerships that are formed through a matching:

De�nition 1 A feasible matching x is a partition of N , where the partition sets are either

pairs fi; jg or singletons fig. If fi; jg 2 x we can write x(i) = j and we refer to x(i) as the

partner of i at x. If fig 2 x we can write x(i) = i and we say that i is unmatched at x.

We will use the notation
P

A to denote the sum over all elements of A. Let x be a feasible

matching. If R � N , we denote x(R) � fj;x(i) = j for some i 2 Rg. If x(R) = R, we

denote by xjR the partition of R where the partition sets belong to x. Therefore, v(R) �P
xjR aij for all feasible matchings x.

De�nition 2 The feasible matching x is optimal if, for all feasible matching x0,
P

x aij �P
x0 aij.

The set of optimal matchings is always non-empty, since there is a �nite number of

matchings. Under De�nition 2 and since v(N) �
P

x aij for all feasible matchings x, it

follows that the matching x is optimal if and only if
P

x aij = v(N).

The players�bene�t in the game will be represented by a vector of payo¤s:

6k is an integer number that does not exceed the integer part of jSj=2.
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De�nition 3 The vector u, with u 2 Rn, is called the payo¤ . The payo¤ u is pairwise-

feasible for (N; a) if there is a feasible matching x such that

ui + uj = aij if x(i) = j and ui = 0 if x(i) = i.

In this case, we say that (u; x) is a pairwise-feasible outcome and x is compatible with u.

De�nition 4 The payo¤ u is feasible for (N; a) if
P

N ui � v(N).

Remark 1 Given a coalition R, the de�nition of v implies that there is some feasible match-

ing x such that x(R) = R and
P

xjR aij = v(R). Furthermore, v(R) �
P

x0jR aij for all feasible

matchings x0 such that x0(R) = R. Then, it follows from De�nition 3 that
P

R ui � v(R)

for all R � N and for all pairwise-feasible outcomes (u; x) with x(R) = R. In

particular,
P

N ui � v(N). Therefore, every pairwise-feasible payo¤ is feasible. �

The natural solution concept is that of stability (the general de�nition of stability is

given in Sotomayor, 2009b). For the one-sided assignment game, stability is equivalent to

the concept of pairwise-stability.

De�nition 5 The pairwise-feasible payo¤ u is pairwise-stable if

(i) ui � 0 for all i 2 N and

(ii) ui + uj � aij for all fi; jg � N .

If x is compatible with u we say that (u; x) is a pairwise-stable outcome.

Condition (i) (individual rationality) means that in a pairwise-stable situation a player

always has the option of remaining unmatched. Condition (ii) ensures the stability of the

payo¤ distribution: If it is not satis�ed for some agents i and j then it would pay for them

to break up their present partnership(s) and form a new one together, as this would give

them each a higher payo¤. In this case, we say that fi; jg blocks u.

We now de�ne the core of (N; a), which we denote by C:

De�nition 6 We say that u 2 C if
P

N ui = v(N) and
P

S ui � v(S) for all S � N .

The following example shows that the core of this model may be empty.

Example 1 Consider N = f1; 2; 3g and aij = 1 for all fi; jg � N . For every feasible payo¤

u there exist two players i and j such that ui+uj < 1. Hence, the core of this game is empty.
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De�nition 7 Let (u; x) be a pairwise-feasible outcome. Let R � N . We say that R is a

stable coalition for (u; x) if (a) x(R) = R, (b) ui + ux(i) = aix(i) for all i 2 R and (c)

ui + uj � aij for all fi; jg � R.

Remark 2 Notice that if R is stable for (u; x) it must be the case that
P

R ui � v(R), ac-

cording to De�nition 7. On the other hand,
P

R ui � v(R), as stated in Remark 1. Therefore,P
R ui = v(R). �

2.2 Preliminary results for the core

In our environment, the concepts of stability and the core are equivalent, as established in

the following proposition.

Proposition 1 The set of pairwise-stable payo¤s coincides with the core of (N; a).

Proof. Suppose u is a pairwise-stable payo¤. Then, u is feasible and soX
N

ui � v(N) (1)

according to Remark 1. Moreover, consider any coalition S and let y be a feasible matching

such that y(S) = S and v(S) =
P

y aij. The pairwise-stability of u implies that ui + uy(i) �

aiy(i) for all i 2 S, so X
S

ui � v(S) for all coalition S. (2)

Under (1) and (2) it follows that
P

N ui = v(N) and
P

S ui � v(S) for all S � N , so u is in

the core.

Now, suppose u is in the core. De�nition 6 implies that ui + uj � v(i; j) = aij for every

coalition fi; jg and ui � v(i) = 0 for all i 2 N , so u does not have any blocking pair and

is individually rational. To see that u is pairwise-feasible, let x be a feasible matching such

that v(N) =
P

x aij. Use that
P

N ui = v(N) and ui+ux(i) � aix(i) for all i 2 N , to get thatP
N ui =

P
x aij �

P
i�x(i)(ui + ux(i)) =

P
N ui, so the inequality cannot be strict, which

implies ui+ux(i) = aix(i) for all i 2 N . Since ui � 0, it follows that ui = 0 if x(i) = i. Hence,

u is pairwise-stable and the proof is complete.

In what follows, given its equivalence with the core concept, the concept of pairwise-

stability will be called corewise-stability.

The following proposition, proven by Sotomayor (2005a, 2009a) and Talman and Yang

(2011), makes clear why, similarly to the two-sided assignment game and in contrast to the
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discrete version (the roommate-problem), we can concentrate on the payo¤s to the agents

rather than on the underlying matching. Indeed, it shows that the set of corewise-stable

outcomes is the Cartesian product of the set of corewise-stable payo¤s and the set of optimal

matchings. We state the proposition without its proof.

Proposition 2 (a) If x is an optimal matching then it is compatible with any corewise-stable

payo¤ u.

(b) If (u; x) is a corewise-stable outcome then x is an optimal matching.

A consequence of Proposition 2 (a) is that, similarly to the two-sided assignment game,

every unmatched player in a corewise-stable outcome has a zero payo¤at any corewise-stable

outcome in the one-sided assignment game. Corollary 1 states this result.

Corollary 1 Let x be an optimal matching. If i is unmatched at x then ui = 0 for all

corewise-stable payo¤s u.7

Proof. Let u 2 C. Under Proposition 2 (a), u is compatible with x, so ui = 0 by the

pairwise-feasibility of u.

3 Tradewise-stable outcomes

In this section, we introduce a key solution concept for the theory developed in this paper:

a tradewise-stable outcome. Tradewise-stable outcomes satisfy properties similar to, but

weaker than, stable outcomes.

De�nition 8 The outcome (u; x) is tradewise-stable (we will often use t-stable, for

short) if it is pairwise-feasible, individually rational and no blocking pair fi; jg exists where

either i or j are matched at x. A matching x is tradewise-stable (t-stable) if there is some

payo¤ u such that the outcome (u; x) is t-stable. The payo¤ u is a tradewise-stable (t-

stable) payo¤ if there is some matching x such that (u; x) is a t-stable outcome.

Clearly, every corewise-stable outcome is t-stable. However, t-stable outcomes are not

necessarily stable. For instance, the outcome where every player is unmatched and obtains a

payo¤of 0 is t-stable, but it is not corewise-stable in any game where at least one partnership

7This result was proved in Demange and Gale (1985) for a two-sided matching market where the utilities

are continuous, so it applies to the two-sided assignment game of Shapley and Shubik (1972).
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creates a positive surplus. Moreover, this example of a t-stable outcome allows us to state

that the set of t-stable outcomes is always non-empty.

To discuss the di¤erence between corewise-stable and t-stable outcomes, consider a

pairwise-feasible and individually rational outcome (u; x). We denote by T (x) the set of

all players who are matched at x, and by U(x) the set of players who are unmatched at x.

That is,

T (x) � fj 2 N ;x(j) 6= jg and U(x) � NnT (x):

The outcome (u; x) is t-stable if and only if no player in T (x) can form a blocking pair neither

with another player in T (x) (which implies that the coalition T (x) is a stable coalition for

(u; x)) nor with any player in U(x). In this sense, we could say that a t-stable outcome is

�internally stable.�We refer to T (x) as the stable active coalition for (u; x). However, to be

corewise-stable the outcome also needs to be �externally stable,�in the sense that no pair of

players in U(x) can block the outcome either. A t-stable outcome might not be �externally

stable.�

We denote by S the set of t-stable payo¤s:

S � fu 2 Rn;u is t-stableg.

Also, given any t-stable matching x, denote:

S(x) � fu 2 S;u is compatible with xg.

Before we state results concerning the t-stable outcomes, we make one remark on the set

T (x) and another on the set U(x), for any t-stable outcome (u; x).

Remark 3 Notice that if (u; x) is t-stable then the set of players T (x) who are matched at x

and all the subsets R � T (x) such that x(R) = R are stable coalitions for (u; x). Therefore,

by Remark 2,
P

T (x) ui = v(T (x)), and for such coalitions R, we also have
P

R ui = v(R). �

Remark 4 Notice that if the t-stable outcome (u; x) is unstable then v(U(x)) > 0. In fact,

let fj; kg be a blocking pair. Then fj; kg � U(x), so

0 =
X
U(x)

ui = (uj + uk) +
X

U(x)nfj;kg

ui < ajk +
X

U(x)nfj;kg

aii � v(U(x)).

Therefore, v(U(x)) > 0. �

Our next results highlight relationships between t-stable matchings and optimal match-

ings, as well as between t-stable outcomes and corewise-stable outcomes. Proposition 3 states
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that a t-stable matching may not be optimal but it is always part of an optimal matching.

It uses Lemma 1 (see the Appendix), which shows that v(T (x)) + v(U(x)) = v(N) for any

t-stable outcome (u; x) :

Proposition 3 Let (u; x) be a t-stable outcome. Then, the set of active partnerships of x is

part of an optimal matching.

Proof. The proof is immediate after the fact that v(T (x)) + v(U(x)) = v(N) because of

Lemma 1, N = T (x) [ U(x) and T (x) \ U(x) = ?.

Proposition 4 states a result complementary to Proposition 3: the only t-stable payo¤s

compatible with an optimal matching are the corewise-stable payo¤s.

Proposition 4 Let (u; x) be a t-stable outcome. Suppose x is optimal. Then u 2 C.

Proof. Denote R a set of pairs fi; jg � T (x) such that v(T (x)) �
P

R aij. Since x is

optimal, then

v(N) =
X
x

aij =
X
xjT (x)

aij +
X
xjU(x)

aij =
X
xjT (x)

aij = v(T (x)),

where the last equality follows from Proposition 3. Then, under Lemma 1, we have that

v(U(x)) = 0 =
P

U(x) ui so, as stated in Remark 4, there is no blocking pair in U(x), which

implies that (u; x) is corewise-stable. Hence, we have completed the proof.

Proposition 4 leads to the following corollary.

Corollary 2 A t-stable outcome (u; x) is corewise-stable if and only if
P

N ui = v(N).

Proof. Consider the t-stable outcome (u; x). If it is corewise-stable then
P

N ui = v(N)

according to De�nition 6. On the hand, if
P

N ui = v(N) then the matching x is necessarily

optimal, so u is a corewise-stable payo¤ as stated in Proposition 4.

Finally, we introduce the idea of an extension of a t-stable outcome, which will be useful

in the next section. In words, a feasible outcome (w; z) extends the t-stable outcome (u; x)

if all the players in the stable active coalition of (u; x) keep their payo¤ but some players

who were unmatched in (u; x) obtain a positive payo¤ (hence, they are matched) in (w; z).

De�nition 9 Let (u; x) be a t-stable outcome. We say that the feasible outcome (w; z)

extends (u; x) if wj > uj for some j =2 T (x) and wj = uj for all j 2 T (x). If (w; z)

is t-stable (respectively, corewise-stable) then (w; z) is said to be a t-stable (respectively,

corewise-stable) extension of (u; x).
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Sometimes, we will refer to a t-stable outcome that does not have any extension as a

non-extendable outcome.

Proposition 5 states that any Pareto improvement of a t-stable outcome through another

t-stable outcome is necessarily an extension of that outcome.

Proposition 5 Let (u; x) and (w; y) be t-stable outcomes. Suppose w > u.8 Then (w; y) is

a t-stable extension of (u; x).

Proof. To show that (w; y) is a t-stable extension of (u; x), we need to prove that

j =2 T (x) for all j such that wj > uj (see De�nition 9). Consider a player j such that

wj > uj and suppose, by contradiction, that j 2 T (x). Given that wj > 0, we have that

j 2 T (y). Then, j 2 T (x) \ T (y) and so j 2 Mw. Denote k � y(j). Lemma 3 implies that

k 2 Mu. Therefore, uk > wk, which contradicts the assumption that w > u. Hence, (w; y)

extends (u; x).

4 Constrained-optimal tradewise-stable outcomes

Of particular interest for our analysis is the set of the t-stable outcomes that are not dom-

inated, via coalition N , by any other t-stable outcome. This section introduces the set of

constrained-optimal tradewise-stable outcomes and provides important properties of this set.

To introduce the set, let us �rst formally de�ne the notion of Pareto optimality.

De�nition 10 Let A be a set of payo¤s. The payo¤ u is Pareto-optimal (PO) in A (or

among all payo¤s in A) if it belongs to A and there is no payo¤ w in A such that w > u.

If u is PO in A and x is compatible with u, we say that (u; x) is a PO outcome in A.

The case in which A corresponds to the set of t-stable payo¤s, that is, A = S, plays an

important role in our theory.

De�nition 11 The payo¤ u is a constrained-optimal tradewise-stable (optimal t-

stable, for short) payo¤ if it is a t-stable payo¤ and it is PO in the set of t-stable payo¤s.

The outcome (u; x) is an optimal t-stable outcome if (u; x) is a t-stable outcome and u

is an optimal t-stable payo¤.

8Given two vectors w; v 2 Rn, we will denote w > u if wj � uj for all players j 2 N and wj > uj for at

least one player j 2 N .
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The set of optimal t-stable payo¤s will be denoted by S�:

S� � fu 2 S;u is Pareto optimal in Sg.

We notice that, given De�nition 9, every optimal t-stable outcome is non-extendable.

Similarly, if u is Pareto optimal in A and A is the set of individually rational and feasible

payo¤s we will refer to u as a PO feasible payo¤.

Remark 5 It follows from De�nition 10 that an individually rational and feasible payo¤ u is

PO feasible if and only if
P

N ui = v(N). Thus, every corewise-stable payo¤ is PO feasible.

However, the Pareto optimality of a payo¤ is not enough to guarantee its corewise-stability.

For instance, in Example 1, the payo¤ u = (1; 0; 0) is not in the core but it is PO feasible,

since
P

N ui = v(N). �

Optimal t-stable payo¤s are, by de�nition, undominated in the set S. Next result shows

that every t-stable payo¤ which is not a optimal t-stable payo¤ is necessarily dominated for

some optimal t-stable payo¤. It uses Lemma 5 (see the Appendix), which shows that the set

of optimal t-stable payo¤s S� is a non-empty and compact set of Rn.9

Proposition 6 Let u be a t-stable payo¤ which is not optimal t-stable, that is, u 2 SnS�.

Then there is some optimal t-stable payo¤ wu such that wu > u.

Proof. Suppose, by way of contradiction, that there is no payo¤ w in S� such that

w > u. Since u =2 S�, there is some w1 2 S such that w1 > u. Then, by contradiction,

w1 =2 S�, so there is some w2 2 S such that w2 > w1 > u. Again, w2 cannot be in S�.

By repeating this procedure, we obtain an in�nite sequence (wt)t=1;2;::: of t-stable payo¤s

with distinct terms. On the other hand, there is a �nite number of t-stable matchings, so

there is some t-stable matching x which is compatible with in�nitely many terms of the

sequence. Denote (vt)t=1;2;::: that subsequence. All the members of the subsequence are in

S so
P

T (x) v
t
j = v(T (x)) for all t = 1; 2; : : :. However, v1 < v2, so v(T (x)) =

P
T (x) v

1
j =P

N v
1
j <

P
N v

2
j =

P
T (x) v

2
j = v(T (x)), which is an absurd. Hence, there is some wu 2 S�

such that wu > u.

Proposition 6 allows us to establish an interesting corollary: there is some payo¤ in S�

that dominates every t-stable payo¤ outside S�.

Corollary 3 There is some optimal t-stable payo¤ w� 2 S� such that
P

N w
�
j >

P
N uj for

all u 2 SnS�.
9Lemma 2 shows that the set S is also a non-empty and compact set of Rn.
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Proof. Since S� is a non-empty and compact set of Rn (see Lemma 5 in the Appendix)

and every continuous function de�ned in a compact set has a maximum in this set, there is

some w� 2 S� such that
P

N w
�
j �

P
N wj for all w 2 S�. Now use Proposition 6 to get thatP

N w
�
j >

P
N uj for all u 2 SnS�.

Proposition 6, together with Proposition 5, also implies that not only are the optimal t-

stable outcomes non-extendable but they are the only non-extendable outcomes. This result

is stated in Corollary 4.

Corollary 4 The set of optimal t-stable outcomes equals the set of non-extendable outcomes.

Proof. Let (u; x) 2 S�. Then (u; x) cannot have any t-stable extension, as stated in

De�nition 9. The other direction is immediate from propositions 6 and 5.

The next property that we prove is that all optimal t-stable outcomes are equally e¢ cient,

in the sense that the players�total payo¤ is the same in every optimal t-stable payo¤. This

property will be proven in Proposition 7, which requires a lemma (Lemma 7 in the Appendix)

that states an interesting property: If (u; x) and (w; y) are optimal t-stable outcomes, then

every unmatched player at x has zero payo¤ at y. Equivalently, if j has a positive payo¤

under an optimal t-stable outcome (u; x) then j is matched under every optimal t-stable

outcome; in particular, j is matched under every corewise-stable outcome.

Proposition 7 Let (u; x) and (w; y) be optimal t-stable outcomes. Then,
P

N uj =
P

N wj.

Proof. Set

B1(x) = fj 2 T (x) \ T (y);x(j) 2 T (x) \ T (y)g;

B1(y) = fj 2 T (x) \ T (y); y(j) 2 T (x) \ T (y)g;

B2(x) = fj 2 T (x) \ T (y);x(j) 2 T (x)nT (y)g;

B2(y) = fj 2 T (x) \ T (y); y(j) 2 T (y)nT (x).

Clearly,

T (x) \ T (y) = B1(x) [B2(x) = B1(y) [B2(y). (3)

Under Remark 3, X
B1(x)

uj = v(B1(x)) and
X
B1(y)

wj = v(B1(y)). (4)
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On the other hand, according to Lemma 7, uj = wj for all j 2 B2(x) and wj = uj for all

j 2 B2(y), so X
B2(x)

uj =
X
B2(x)

wj and
X
B2(y)

wj =
X
B2(y)

uj. (5)

Moreover, Lemma 7 implies thatX
T (x)nT (y)

uj = 0 and
X

T (y)nT (x)

wj = 0. (6)

Therefore, we can write,

X
N

uj =
X
T (x)

uj +
X

NnT (x)

uj =
X
T (x)

uj =
X

T (x)\T (y)

uj +
X

T (x)nT (y)

uj =
X

T (x)\T (y)

uj =

X
B1(x)

uj +
X
B2(x)

uj = v(B1(x)) +
X
B2(x)

wj �
X
B1(x)

wj +
X
B2(x)

wj =

X
T (x)\T (y)

wj =
X

T (x)\T (y)

wj +
X

T (y)nT (x)

wj =
X
T (y)

wj =
X
T (y)

wj +
X
NnT (y)

wj =
X
N

wj,

where the fourth equality uses (6); the �fth equality follows from (3); the sixth equality

follows from (4) and (5); the inequality follows from the fact that B1(x) � T (y) and y is a

t-stable matching, and so B1(x) cannot block y; the seventh equality follows from (3); and

the eighth equality follows from (6).

Then, X
N

uj �
X
N

wj. (7)

By reverting the roles between (u; x) and (w; y) in the expression (7) we obtainX
N

wj �
X
N

uj. (8)

According to (7) and (8) we get that
P

N uj =
P

N wj and we have completed the proof.

Proposition 7 implies that every payo¤ in S� reaches the maximum total payo¤ among

all t-stable payo¤s. Together with Corollary 3, Proposition 7 also implies that every payo¤

in S� dominates every t-stable payo¤ not in S�.

We will refer to a matching that is compatible with an optimal t-stable payo¤ as quasi-

optimal. Proposition 8 asserts that every quasi-optimal matching is compatible with any

optimal t-stable outcome. That is, Proposition 8 states for the set of optimal t-stable out-

comes a property similar to that stated in Proposition 2 (a) for the set of corewise-stable

outcomes. Indeed, the set of optimal t-stable outcomes is the Cartesian product of the set

of optimal t-stable payo¤s and the set of quasi-optimal matchings.
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Proposition 8 Let (u; x) be an optimal t-stable outcome. Then, x is compatible with any

optimal t-stable payo¤.

Proof. Let (w; y) be any optimal t-stable outcome. We want to show that wi+wj = aij

if x(i) = j and wi = 0 if i 2 U(x). Notice thatX
T (x)

ui =
X
T (x)

ui +
X
U(x)

ui =
X
N

ui =
X
N

wi =
X
T (x)

wi +
X
U(x)

wi =

X
T (x)

wi +
X

T (y)nT (x)

wi +
X

U(y)nT (x)

wi =
X
T (x)

wi,

where the third equality is due to Proposition 7; and Lemma 7 was used in the last equality

to conclude that
P

T (y)nT (x)wi = 0. Then,X
T (x)

ui =
X
T (x)

wi. (9)

We can write T (x) = (T (x)\T (y))[(T (x)nT (y)). From Lemma 7 it follows that
P

T (x)nT (y) ui =P
T (x)nT (y)wi = 0. Then,

P
T (x) ui =

P
T (x)\T (y) ui and

P
T (x)wi =

P
T (x)\T (y)wi. Therefore,

using (9) we obtain X
T (x)\T (y)

ui =
X

T (x)\T (y)

wi. (10)

To prove that wi + wj = aij if x(i) = j, set G � ffi; jg � T (x) \ T (y);x(i) = jg and

H � ffi; jg � T (x); i 2 T (x) \ T (y); j 2 T (x)nT (y) and x(i) = jg. Lemma 7 implies thatX
H

ui =
X
H

wi. (11)

Moreover, since w is t-stable, we must have that wi + wj � aij for all fi; jg � T (x) \ T (y).

Then, in particular, X
G

aij �
X
G

(wi + wj). (12)

Therefore,X
T (x)\T (y)

ui =
X
G

(ui + uj) +
X
H

ui =
X
G

aij +
X
H

wi �
X
G

(wi + wj) +
X
H

wi =
X

T (x)\T (y)

wi,

where we used (11) in the second equality and (12) in the inequality. According to (10), the

inequality must be an equality, and so we have proved that wi + wj = aij for all fi; jg such

that fi; jg � (T (x)\T (y)) and x(i) = j. Next, consider fi; jg with x(i) = j such that either

i 2 (T (x)nT (y)) or j 2 (T (x)nT (y)). Without loss of generality suppose that i =2 T (y).

Then, wi = 0 and, under Lemma 7, we have that ui = 0 and wj = uj, from which follows

that wi + wj = ui + uj = aij, so wi + wj = aij.
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It remains to show that wi = 0 for all i 2 U(x). But this is immediate from the fact that

if i 2 T (y)nT (x), then Lemma 7 implies that wi = 0. Hence, the matching x is compatible

with w and we have completed the proof.

Our �nal result in this section provides another feature that is shared by all optimal

t-stable outcomes. It also helps us better understand the structure of the optimal t-stable

and that of the t-stable outcomes. The result states that if an optimal t-stable outcome

is not corewise-stable then the set of pairs of blocking agents is the same for every optimal

t-stable outcome. Moreover, each of those pairs also blocks any t-stable outcome. This result

implies, in particular, that if an agent is unmatched at some optimal t-stable outcome but he

is matched with zero payo¤at another optimal t-stable outcome then that agent will never be

part of a blocking pair in an optimal t-stable outcome. And since every t-stable outcome is

extended by an optimal t-stable outcome, any blocking agent of an optimal t-stable outcome

is unmatched at any t-stable outcome.

Proposition 9 Let (u; x) 2 S�nC and let fj; kg be a blocking pair for (u; x). Then, fj; kg

blocks (w; y), for any (w; y) 2 S. In particular, fj; kg � U(y), for any (w; y) 2 S.

Proof. Notice �rst that, given that fj; kg blocks (u; x), it is the case that j and k are

unassigned at x, so 0 = uj+uk < ajk. Moreover, j and k have a zero payo¤ at any optimal t-

stable outcome, under Lemma 7 (even if j or k were matched in an optimal t-stable outcome,

they would obtain a zero payo¤). Therefore, the sum of the payo¤s of j and k in any optimal

t-stable outcome is less than ajk, so fj; kg blocks any optimal t-stable outcome. Now, use

propositions 4 and 6 to get that any (w; y) is extended by some optimal t-stable outcome,

so fj; kg blocks any t-stable (w; y). In particular, j and k are unassigned at y. Hence, the

proof is complete.

The properties that we have proved in this section suggest that the set of optimal t-stable

outcomes constitutes a natural solution concept if one cares about payo¤s that are �as stable

as possible.�First, every optimal t-stable outcome is internally stable, so no active player

has an incentive to look for other partners inside or outside the set of active players. Second,

each optimal t-stable outcome provides the maximum surplus out of the set of internally

stable outcomes; and all the internally stable outcomes outside the set provide less surplus.

Third, any internally stable outcome that is not optimal t-stable can be naturally extended

to an optimal t-stable outcome. Fourth, all optimal t-stable outcomes are compatible with

the same matchings. Fifth, all the previous properties of optimal t-stable outcomes replicate

properties that are satis�ed by the corewise-stable outcomes. Finally, the set of optimal
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t-stable outcomes is always non-empty and, as will be proved in section 6, the set of optimal

t-stable payo¤s coincides with the core, when the core is non-empty.

5 A dynamic partnership formation process

The intuitive idea of an optimal t-stable outcome is that it corresponds to an outcome that

we can expect to occur in an idealized environment where agents take decisions under the

assumption of cooperative behavior. As stated in the Introduction, our theory is based on

the idea of collective rationality, in the sense that a player only engages in cooperation that

is optimal for him/her. Once an agreement between a pair of agents is reached, then they

must be certain than there will be no more favorable option elsewhere.

In fact, the properties of the t-stable outcomes allow us to envision a dynamic and �nite

partnership formation process of t-stable outcomes that ends with an optimal t-stable out-

come. At every step t of this process, the current unmatched agents work among themselves

to form partnerships and to split the gains obtained in these partnerships. Once the vector

of payo¤s of any new partnership of matched agents is established, the unmatched agents are

not interested in trading with any matched agent, currently and previously formed. Because

of the properties concerning the extensions of t-stable outcomes (Proposition 6 and Corol-

lary 4) and the fact that the optimal t-stable payo¤s extend the t-stable payo¤s (Proposition

4), this process always ends in an optimal t-stable outcome, which provides further support

for the set of optimal t-stable outcomes as a natural solution concept for the one-sided

assignment game.

To describe the sequential process, consider any t-stable outcome (u; x) such that T (x) 6=

?. De�ne

A(u; x) � f(up; xp) is t-stable;T (xp) � T (x), and xp(j) = x(j) and upj = uj for all j 2 T (xp)g.

That is, A(u; x) is the set of t-stable outcomes in which the pairs that are matched do it

according to x and have the same payo¤s as u.

Denote B1(u; x) � fSp � T (x);Sp 6= ? and Sp = T (xp) for some (up; xp) 2 A(u; x)g.

That is, B1(u; x) is the set of the non-empty stable active coalitions of the t-stable outcomes

in A(u; x). The set B1(u; x) is non-empty, since T (x) 2 B1(u; x). Furthermore, B1(u; x)

is �nite and is endowed with the partial order de�ned by the set inclusion relation. Then

B1(u; x) has a minimal element, that is, there exists some coalition that does not have
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any sub-coalition in B1(u; x). Set D1(u; x) any such coalition10 and let (u1; x1) be the

corresponding t-stable outcome in A(u; x). Moreover, de�ne C1(u; x) � D1(u; x).

If D1(u; x) 6= T (x), that is, if (u1; x1) 6= (u; x), we denote B2(u; x) � fSp � T (x);Sp =

T (xp) for some (up; xp) 2 A(u; x) such that (up; xp) is an extension of (u1; x1)g. The

set B2(u; x) is also non-empty because T (x) 2 B2(u; x). By using similar arguments as

above, we obtain the existence of a minimal element of B2(u; x). Set D2(u; x) any such

coalition and let (u2; x2) be the corresponding t-stable outcome in A(u; x). By construc-

tion, (u2; x2) is a t-stable outcome in A(u; x) and it extends (u1; x1). Also, by de�ning

C2(u; x) � D2(u; x)nD1(u; x), we obtain a partition fC1(u; x); C2(u; x)g of the set T (u2) of

active player in the t-stable outcome (u2; x2):

By continuing this procedure, we obtain a �nite sequence of t-stable outcomes in A(u; x):

(u1; x1); (u2; x2); : : : ; (uk; xk), where (uk; xk) = (u; x) and (up+1; xp+1) extends (up; xp) for all

p = 1; : : : ; k � 1. Then, T (x) = Dk(u; x) = C1(u; x) [ : : : [ Ck(u; x).

We can describe the sequential process generated by (Dp(u; x))p=1;:::;k as follows. The

�rst step of such a process yields (u1; x1), the second step yields (u2; x2), and so on. At

every step t, no agent j in NnDt(u; x) is willing to pay any agent i in Dt(u; x) more than

uti. Thus, at any step t, the current outcome (u
t; xt) is t-stable and is an extension of the

current outcome (ut�1; xt�1).

If the t-stable outcome (u; x) is not an optimal t-stable outcome then there is another

t-stable outcome that extends (u; x) and the procedure could continue. It only ends when

no interaction is able to bene�t the agents involved, in which case the core is reached, or

when any new interaction leads to a set of matched agents which is not internally stable.

In any case, the �nal outcome is an optimal t-stable outcome. Since any optimal t-stable

outcome can be formed this way and those outcomes cannot be extended by another t-stable

outcome, we have that the set of optimal t-stable outcomes is the set of all the outcomes

which constitute the �nal steps of such procedures.

The following example shows that the number of processes that reach an optimal t-stable

outcome may vary inside the set of optimal t-stable outcomes. This happens even though,

in the example there is only one matching which is compatible with all the optimal t-stable

payo¤s.

Example 2 The set of players is N = f1; 2; 3; 4g and the surplus of the partnerships is

a12 = 10, a13 = 4, a34 = 12, and aij = 0 for the other partnerships. The set of optimal t-stable

10There can be several minimal coalitions.
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outcomes, which coincides with the corewise-stable outcomes, is the set of outcomes (u; x)

that satisfy x12 = 1, x34 = 1 and the payo¤s are non-negative numbers with u1 + u2 = 10,

u3 + u4 = 12, and u1 + u3 � 4.

(i) For the optimal t-stable outcome with u = (6; 4; 5; 7), there are two di¤erent processes:

either (u1 = (6; 4; 0; 0), x1 with x112 = 1 and the other entries are 0) or (u
1 = (0; 0; 5; 7), x1

with x134 = 1 and the other entries are 0); in both cases (u
2; x2) = (u; x).

(ii) For the optimal t-stable outcome with u = (6; 4; 3; 9), there is only one process:

(u1 = (6; 4; 0; 0), x1 with x112 = 1 and the other entries are 0) and (u2; x2) = (u; x). Note

that (u1 = (0; 0; 3; 9), x1 with x134 = 1 and the other entries are 0) cannot be part of the

process because it is not a t-stable outcome: players 1 and 3 block this outcome.

(iii) Finally, for the optimal t-stable outcome with u = (3; 7; 3; 9), the only process is the

trivial one-step process: (u1; x1) = (u; x). �

We should emphasize that the dynamic partnership formation process that we have de-

scribed is not an algorithm to �nd the set of optimal t-stable allocations. Also, we do not

provide a history behind the coalitional interactions among individuals that would lead to

the formation of an optimal t-stable allocation. The process only postulates a plausible

theory according to which every optimal t-stable allocation may arise. It is based on the

property that, for any optimal t-stable allocation, there is a coalitional structure that points

to a possible ordering in the formation of these coalitions and which ends in that allocation.

Moreover, this coalitional structure naturally de�nes a dynamic procedure where players

only trade under the assumption of optimal cooperative behavior and where some players

end up unmatched. Only optimal t-stable allocations occur at the end of such a partner-

ship formation process (this does not imply that every such allocation necessarily occurs).

Thus, the process provides a justi�cation of the concept of optimal t-stability as the natural

cooperative solution concept for this market.

We will come back to the partnership formation process in the next section, once we

analyze the relationship between the set of optimal t-stable outcomes and the core.

6 Constrained-optimal tradewise-stable outcomes and

corewise-stable outcomes

Section 4 states several appealing properties of the set of optimal t-stable outcomes. They

allowed us to propose this set as a natural solution concept for the one-sided assignment
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game. In the current section, we further support our proposal as a new stability concept by

showing that the set of optimal t-stable payo¤s and the core coincide, when the core is not

empty. Moreover, the relationship between the core and the set of optimal t-stable outcomes

constitutes a useful tool to establish conditions under which the core is non-empty in these

environments.

Proposition 10 proves two important properties of the t-stable outcomes when the core

is non-empty. First, it states that for any t-stable outcome which is not corewise-stable, it

is always possible to construct a new outcome that keeps the payo¤ of each matched player

and is corewise-stable. Second, it shows that the sum of the payo¤s of the set of agents that

are matched in a t-stable outcome is always maintained in any corewise-stable outcome.

Proposition 10 Let (u; x) be a t-stable outcome which is not corewise-stable. Suppose the

set of corewise-stable outcomes is non-empty. Then:

(a) there exists a corewise-stable outcome (u�; z) that extends (u; x), and

(b)
P

T (x) ui =
P

T (x)wi for all w 2 C.

Proof. According to Proposition 3, the set of active partnerships of x is part of some

optimal matching. Therefore, there is some optimal matching z such that z(i) = x(i) for all

i 2 T (x). Let (w; z) be any corewise-stable outcome. Construct the outcome (u�; z) such

that u�i = ui for all i 2 T (x) and u�i = wi for all i 2 NnT (x). The outcome (u�; z) is feasible.

We claim that u� 2 C. In fact, suppose fi; jg blocks u�. Then, u�i +u�j < aij. Notice that, by

construction, u� � u, so ui+uj < aij. Since x is t-stable, we must have that fi; jg � NnT (x).

On the other hand, the corewise-stability of w implies that u�i + u
�
j = wi + wj � aij, which

contradicts the assumption that fi; jg blocks u�. Then, u� does not have any blocking pair.

The property that (u�; z) is individually rational is immediate from the individual ratio-

nality of (u; x) and (w; z). According to De�nition 6, it remains to show that v(N) =
P

N u
�
i .

Write:

v(N) �
X
N

u�i =
X
T (x)

ui+
X

NnT (x)

wi = v(T (x))+
X

NnT (x)

wi �
X
T (x)

wi+
X

NnT (x)

wi =
X
N

wi = v(N),

(13)

where in the �rst inequality we used the fact that u� does not have any blocking pair, in

the second equality we used Remark 3, and the second inequality follows from the corewise-

stability of w. Then, the inequalities in (13) must be equalities, so v(N) =
P

N u
�
i . Therefore,

we have proved that (u�; z) is corewise-stable.
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To see that (u�; z) extends (u; x), use that u�i � ui for all i 2 N . Given that (u�; z) is

corewise-stable and that (u; x) is unstable, we have that fj 2 N ;u�j > ujg 6= ?. On the

other hand, since u�j = uj for all j 2 T (x), it follows that fj 2 N ;u�j > ujg � NnT (x).

Then, according to De�nition 9, (u�; z) extends (u; x), and we have proved part (a) of the

proposition.

Now use that the inequalities in (13) must be equalities, so
P

T (x) ui = v(T (x)) =P
T (x)wi, which proves assertion (b). Hence, we have completed the proof.

It is worth mentioning that while Proposition 10 states that any t-stable outcome which

is not in the core can be extended to a corewise-stable payo¤, it does not ensure that it is

possible to �shrink�any corewise-stable payo¤. For example, in Case (iii) of Example 2, the

payo¤ vector u = (3; 7; 3; 9) is a corewise-stable payo¤ but (3; 7; 0; 0) is not a t-stable payo¤,

even though x12 = 1 in the corewise-stable matching.

The set of optimal t-stable payo¤s provides a set of solutions for every game. Theorem 1

states that this set coincides with the core, which is equivalent to the set of pairwise-stable

payo¤s, if and only if the core is not empty.

Theorem 1 The set of corewise-stable payo¤s is non-empty if and only if S� = C.

Proof. Suppose the core is non-empty. Let (u; x) be an optimal t-stable outcome. We

are going to show that (u; x) is corewise-stable. In fact, suppose by way of contradiction,

that (u; x) is unstable. Under Proposition 10, there is some corewise-stable outcome (u�; z)

which extends (u; x). Then, u�j � uj for all j 2 N and u�j > uj for at least one player j.

But this contradicts the fact that (u; x) is Pareto optimal in S. Hence, (u; x) is corewise-

stable. In the other direction, let (u; x) be a corewise-stable outcome. Then, (u; x) is PO

feasible. Since every t-stable outcome is feasible, it follows that there is no t-stable Pareto

improvement of (u; x). Given that (u; x) is t-stable, it must be an optimal t-stable outcome.

Hence, S� = C.

The proof that S� = C implies that the core is not-empty is immediate from the fact

that S� 6= ?.

To emphasize that the set of optimal t-stable outcomes is the natural extension of the

set of corewise-stable outcomes when the last set is empty, let us mention that we can use

properties for the set of optimal t-stable outcomes, together with Theorem 1, to obtain the

corresponding properties of the core as immediate corollaries. In particular, the result that an

optimal matching is compatible with any corewise-stable payo¤ (Proposition 2) is a corollary

of Proposition 8 and Theorem 1 for the environments where the core is not empty, once we
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realize that the quasi-optimal matchings are optimal if the core exists. And Corollary 1 is

just a corollary of that result.

Going back to the partnership formation process discussed in the previous section, Theo-

rem 1 ensures that it ends when a core outcome is reached, whenever the core is non-empty.

If the �nal outcome of some sequential process is corewise-stable then the �nal outcome of

every sequential process is corewise-stable. On the other hand, whatever sequence is formed,

if the �nal outcome of some coalition formation process is corewise-unstable then the �nal

outcome of every coalition formation process is corewise-unstable and the core is empty.

We can use the relationship between the core and the set of optimal t-stable outcomes

established in Theorem 1 to obtain conditions under which the core exists. First, Theorem 2

uses the properties of the set of optimal t-stable payo¤s to provide a necessary and su¢ cient

condition for the core to be non-empty based on the examination of optimal t-stable payo¤s.

Theorem 2 The set of corewise-stable outcomes is non-empty if and only if every optimal

t-stable payo¤ is PO feasible.

Proof. Suppose �rst that the set of corewise-stable outcomes is non-empty and let

u 2 S�. Theorem 1 implies that u 2 C, so u is PO feasible.

In the other direction, take an optimal t-stable payo¤ u, which is also PO feasible, and

let x be a t-stable matching compatible with u. Then,
P

N ui =
P

x(ui + uj) =
P

x aij.

Since u is PO feasible then v(N) =
P

N ui. Therefore,
P

x aij = v(N), so x is an optimal

matching. Proposition 4 then implies that u 2 C, so C 6= ?. Hence, the proof is complete.

Our �nal theorem provides a necessary and su¢ cient condition for the emptiness of the

core based on the idea of �non-solvable blocking pairs.�

Some of the blocking pairs of a t-stable outcome �vanish�along the partnership forma-

tion process that we have described at the end of section 5, in the sense that they do not

block some t-stable outcomes that extend the original t-stable outcome. Other blocking

pairs �persist�along the process as they block all the t-stable extensions of the original out-

come, including the optimal t-stable outcomes that can be obtained in the last term of the

sequences. As we will show in Theorem 3, the last type of blocking pairs play a fundamental

role in the emptiness of the core. We will call them �non-solvable blocking pairs.�

De�nition 12 Let (u; x) be a t-stable outcome and let fi; jg � U(x), with aij > 0 (i.e.,

fi; jg is a blocking pair). We say that fi; jg is a non-solvable blocking pair of (u; x)
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if either u 2 S� or fi; jg � U(x0) for every t-stable extension (u0; x0) of (u; x). Also, we say

that fi; jg is a non-solvable blocking pair if it is a non-solvable blocking pair for some

t-stable outcome (u; x).

Therefore, since aij > 0, if fi; jg is a non-solvable blocking pair for (u; x), then

fi; jg blocks every t-stable extension of (u; x), if any. In this case, fi; jg also blocks the

optimal t-stable outcome which extends (u; x), and that optimal t-stable outcome

is corewise-unstable which, under Theorem 1, implies C = ?. In fact, every blocking

pair fi; jg of an optimal t-stable outcome is a non-solvable blocking pair of all t-

stable outcomes. This is because, under Proposition 9, the pair fi; jg blocks every t-stable

outcome (including all optimal t-stable outcomes). Thus, fi; jg is a non-solvable blocking

pair of every t-stable outcome. Hence, the set of non-solvable blocking pairs of a given

t-stable outcome is the same as that of every t-stable outcome and, in particular,

it coincides with the set of blocking pairs of any optimal t-stable outcome. These

conclusions are formalized in the following results.

Proposition 11 Let (u; x) be a t-stable outcome and let fi; jg be a non-solvable blocking

pair for (u; x). Then, fi; jg is a non-solvable blocking pair of every t-stable outcome.

Proof. As stated in De�nition 12, fi; jg is a blocking pair of the optimal t-stable outcome

that extends (u; x), in case u =2 S�. Then, in any case, fi; jg is a blocking pair of an optimal

t-stable outcome. According to Proposition 9, fi; jg is a blocking pair of every t-stable

outcome, and is so for every extension of any t-stable outcome. De�nition 12 then implies

that fi; jg is a non-solvable blocking pair of every t-stable outcome. Hence, the proof is

complete.

Corollary 5 uses Proposition 11 to characterize the non-solvable blocking pairs as the

blocking pairs of an optimal t-stable outcome.

Corollary 5 The pair fi; jg is a non-solvable blocking pair if and only if it is a blocking pair

of an optimal t-stable outcome.

Proof. According to De�nition 12, the non-solvable blocking pairs of an optimal t-stable

outcome are its blocking pairs. On the other hand, under Proposition 11, the set of non-

solvable blocking pairs of a given t-stable outcome is the same as that for every t-stable

outcome, in particular for every optimal t-stable outcome. Then, the set of non-solvable
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blocking pairs of a given t-stable outcome coincides with the set of blocking pairs of any

optimal t-stable outcome.

We can now state the theorem that provides the conditions for the existence of the core.

Theorem 3 The following conditions are equivalent:

(i) C = ?;

(ii) every t-stable outcome has a non-solvable blocking pair;

(iii) there is a t-stable outcome that has a non-solvable blocking pair.

Proof. Suppose C = ?. Let (w; y) be an optimal t-stable outcome. Since C = ?

we have that (w; y) is corewise-unstable according to Theorem 1. Let fi; jg � U(y) with

aij > 0. It follows from Proposition 9 that fi; jg blocks every t-stable outcome, in particular

it blocks every extension of any t-stable outcome, if any. Then, under De�nition 12, fi; jg

is a non-solvable blocking pair of every t-stable outcome. Then (i) implies (ii). Clearly, (ii)

implies (iii).

Now, let (u; x) be a t-stable outcome and suppose fi; jg is a non-solvable blocking pair for

(u; x). As shown in the proof of Proposition 11, fi; jg is a blocking pair of an optimal t-stable

outcome. Theorem 1 implies that C = ?, so (iii) implies (i). Hence, we have completed the

proof.

Remark 6 From the results above we can conclude that fi; jg is a non-solvable blocking pair

for some t-stable outcome if and only if the pair fi; jg blocks every t-stable outcome. Then,

if two t-stable outcomes have disjoint sets of blocking pairs, the core is non-empty. �

Our �nal remark makes clear the extent to which a non-solvable blocking pair is distinct

from the other blocking pairs.

Remark 7 Our previous results imply that if fi; jg is a non-solvable blocking pair for (u; x)

then there is no t-stable extension (w; y) of (u; x) such that y(i) = j. �

7 Concluding remarks

Our paper studies the one-sided assignment game, which is the generalization of the two-

sided assignment game of Shapley and Shubik (1972) to the case where any two agents can

form a partnership. It provides a new point of view about stability through the concepts of

tradewise-stable outcome and the constrained-optimal tradewise-stable outcome.
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Tradewise-stable outcomes capture some notion of internal stability: In a tradewise-stable

outcome, a matched agent cannot block the situation deviating with either another matched

or unmatched agent. In that sense, the set of matched agents (the members of the �club of

active agents�) is in a stable situation as none of its members can deviate. The properties of

the set of tradewise-stable outcomes allow us to propose a dynamic �partnership formation�

process. The set of partners enlarges at each step of the process, but the payo¤ of the old

partners does not change with the arrival of new members. At the end of the process, we

always obtain an outcome which is constrained-optimal in the set of t-stable outcomes. The

process suggests that when there is no stable allocation, the constrained-optimal t-stable

allocation is the most stable outcome that we can expect.

We view the set of constrained-optimal tradewise-stable outcomes as a natural solution

concept for the one-sided assignment game. Each of them generates (and they are the only

ones that do so) the highest possible total surplus in the set of t-stable outcomes. And, as the

previous dynamic process suggests, these outcomes are �as stable as possible,�in the sense

that any matching involving a larger set of matched agents will necessarily be unstable; the

club of active agents would be too large. In fact, the set of constrained-optimal tradewise-

stable payo¤s coincides with the core when the core is not empty. Thus, the solution concept

keeps all the good properties of the core when it exists, but it also provides a prediction for

those markets where the core does not exist. Moreover, several of the nice properties of

the core, when it is non-empty, are extended to the set of Pareto-optimal tradewise-stable

outcomes.

Bondareva (1963) and Shapley (1967) proved that the core of a transferable utility game

is non-empty if and only if the game is balanced. Thus, for the game considered here,

the condition that every optimal tradewise-stable payo¤ is Pareto-optimal feasible is equiv-

alent to balancedness. This suggests the question of whether this equivalence persists in

all transferable-utility (TU) games. The answer to this question is not easy. Our results

strongly rely on the existence of a feasible matching underlying every feasible outcome.

However, players do not necessarily form partnerships in the general TU game. On the

other hand, the intuition behind a tradewise-stable outcome is not related to a matching

and seems to be quite general: if all �interactions�are made under the premise of optimal

behavior, a tradewise-stable outcome results. In a subsequent work, Pérez-Castrillo and So-

tomayor (2019) consider the extension of the present investigation to the coalitional games

with transfers. This extension is not straightforward because our concepts make use of the
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fact that every feasible allocation is compatible with a feasible matching. The solution of

this problem is possible by the identi�cation, for every feasible allocation, of some conve-

nient coalitional structure that, restricted to the one-sided matching model, coincides with

a feasible matching.

8 Appendix

Lemma 1 Let (u; x) a t-stable outcome. Then, v(T (x)) + v(U(x)) = v(N).

Proof. Let y be an optimal matching. Then, v(N) =
P

y aij. Set

� � ffi; jg 2 y; fi; jg \ T (x) 6= ? and fi; jg \ U(x) 6= ?g,

� � ffi; jg 2 y; fi; jg � T (x)g and

 � ffi; jg 2 y; fi; jg \ T (x) = ?g.

Also, denote

�x � fi 2 T (x); fi; jg 2 � for some jg

and

R is a set of pairs fi; jg � U(x) such that v(U(x)) �
X
R

aij,

R0 � U(x)n [ fi; jg and

R00 is a set of pairs fi; jg � T (x) such that v(T (x)) �
X
R00

aij.

Then,
P

T (x) ui =
P

�x
ui+

P
� aij �

P
� aij+

P
� aij, where the inequality is due to the fact

that (u; x) 2 S, i 2 T (x), and ux(i) = 0 for all i 2 �x, and so ui = ui + ux(i) � aix(i) for all

i 2 �x.

Also, R0 [  is a partition of U(x), so v(U(x)) =
P

R aij �
P

 aij +
P

R0 aii =
P

 aij.

Then,

v(N) =
X
y

aij =

 X
�

aij +
X
�

aij

!
+
X


aij �
X
T (x)

ui + v(U(x)) = v(T (x)) + v(U(x)),

where in the last equality it was used that T (x) is a stable coalition. Therefore,

v(N) � v(T (x)) + v(U(x)). (14)

On the other hand, y is an optimal matching, so v(N) =
P

y aij �
P

R[R00 aij = v(T (x)) +

v(U(x)). Then,

v(N) � v(T (x)) + v(U(x)): (15)
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Hence, v(T (x)) + v(U(x)) = v(N) and the proof is complete.

Lemma 2 The set of t-stable payo¤s S is a compact set of Rn.

Proof. The set S is bounded because 0 � uj � v(N) for all j 2 N and for all t-stable

payo¤s u. To prove that it is also closed, take any sequence (ut)t=1;2;::: of t-stable payo¤s, with

ut ! u when t tends to in�nity. Since the set of matchings is �nite, there is some matching x

which is compatible with in�nitely many terms of the sequence (ut)t=1;2;:::. Denote (vt)t=1;2;:::

this subsequence. Then, if x(j) = k, uj + uk = limt!1(v
t
j + v

t
k) = limt!1ajk = ajk.

Similarly, if x(j) = j then uj = limt!1v
t
j = 0. Thus, x is compatible with u, so (u; x) is

feasible. We claim that if j is matched at x then j is not part of a blocking pair of (u; x). In

fact, uj +uk = limt!1(v
t
j + v

t
k) � limt!1ajk = ajk for any k 2 Nnfjg, where the inequality

holds because (vt; x) is a t-stable outcome for all t. Therefore, (u; x) is a t-stable outcome,

so u is a t-stable payo¤. Hence, the set of t-stable payo¤s is bounded and closed, so it is

compact.

Next result is a Decomposition Lemma for the set of t-stable outcomes which has sim-

ilarities with other decomposition lemmas in matching models (see, for instance, Gale and

Sotomayor, 1985). The lemma states that, for any two t-stable outcomes, a player who is

matched at both outcomes and obtains a higher payo¤ in the �rst is necessarily matched, at

both outcomes, to a player who obtains a higher payo¤ in the second.

Lemma 3 Let (u; x) and (w; y) be t-stable outcomes. Let Mu � fj 2 T (y);uj > wjg and

Mw � fj 2 T (x);wj > ujg. Then x(Mu) = y(Mu) =Mw and x(Mw) = y(Mw) =Mu.11

Proof. We �rst prove that x(Mu) �Mw. Take j 2Mu; then j is matched under x since

uj > wj � 0. We show by contradiction that k � x(j) is in Mw. Suppose k =2Mw, then

ajk = uj + uk > wj + wk

which implies that (j; k) blocks (w; y). However, j 2 Mu so it is matched at y, which

contradicts that (w; y) is t-stable.

A similar argument leads to y(Mw) �Mu.
11The decomposition lemma applies, in particular, to core outcomes. Then, an immediate consequence

of the lemma is a polarization of interests between the partners along the core: If (u; x) and (w; y) are

corewise-stable outcomes, j is matched to k under x or under y, and uj > wj , then wk > uk. This is because

both payo¤s are compatible with the same optimal matching; therefore, if j is matched to k under (u; x)

then j is also matched to k under (w; x), so Lemma 3 applies.
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Moreover, x(Mu) � Mw implies Mu � x(Mw) and y(Mw) � Mu implies Mw � y(Mu).

Since all the players inMu and inMw are matched at x and y, it follows that jMuj = jx(Mu)j,

jMwj = jy(Mw)j, jy(Mu)j = jMuj and jy(Mu)j = jMuj. Therefore,

jMuj = jx(Mu)j � jMwj = jy(Mw)j � jMuj

and

jMwj � jy(Mu)j = jMuj � jx(Mw)j = jMwj,

which imply x(Mu) =Mw, y(Mw) =Mu, y(Mu) =Mw, and x(Mw) =Mu.

We notice that, in the proof of Lemma 3, it is shown that uj > 0 for all j 2 Mu and

wj > 0 for all j 2 Mw. Therefore, we can write Mu = fj 2 T (x) \ T (y);uj > wjg and

Mw � fj 2 T (x) \ T (y);wj > ujg.

Lemma 4 Let A be a non-empty and compact set of Rn, ordered with the partial order

relation � induced by Rn. Then, the set of maximal elements of A with respect to � is a

non-empty and compact set of Rn.

Proof. Denote A� � fu 2 A;u is a maximal element of Ag. It is known that every

non-empty, compact and partially ordered set has a maximal element, so A� 6= ?. The set

A� is clearly bounded, since A is bounded. To see that A� is closed, take any sequence of

vectors (ut)t=1;2;:::, with ut 2 A� for all t, which converges to some vector u. Suppose, by

way of contradiction, that u =2 A�. Then, there exists some vector w 2 A such that w > u.

If this is the case, there is some neighborhood V of the vector u and some integer k such

that ut 2 V for all t � k and w > u0 for all u0 2 V . In particular, w > uk, which contradicts

the assumption that uk 2 A�. Hence, A� is a compact set of Rn.

Lemma 5 The set of optimal t-stable payo¤s S� is a non-empty and compact set of Rn.

Proof. According to Lemma 2, S is compact and non-empty. Moreover, S is an ordered

set by the partial order relation � induced by Rn. Then, Lemma 4 applies and so S�, the

set of maximal elements of S, is a non-empty and compact set of Rn.

Lemma 6 Let (u; x) and (w; y) be optimal t-stable outcomes. Let j� 2 T (x)nT (y) with

aj�x(j�) > 0. Then x(j�) 2 T (y).

Proof. Suppose, by way of contradiction, that x(j�) 2 T (x)nT (y). Denote A � ft 2

T (x)nT (y);x(t) 2 T (x)nT (y)g. We have that j� 2 A, so A 6= ?.
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We �rst show that

wq� + ut� = ut� < aq�t� for some t� 2 A and q� 2 Nn(T (y) [ A). (16)

Suppose, by way of contradiction, that there are no such players t� and q�. Then, either

Nn(T (y) [A) = ? or (given that wq = 0 for all q =2 T (y)) ut � aqt for all q 2 Nn(T (y) [A)

and t 2 A. In any case, we can construct the outcome (w0; y0) as follows: the matching y0

agrees with x on A and it agrees with y on NnA, hence, T (w0) = T (y)[A; the payo¤ vector

satis�es w0j = wj for all j 2 T (y), w0j = uj for all j 2 A and w0j = 0 for all j 2 Nn(T (y)[A).

Since (u; x) is t-stable, there is no pair blocking (w0; y0) among the agents of A. Because

(w; y) is t-stable, there is no blocking pair formed by two agents in T (y) or an agent in A and

an agent in T (y). Finally, if Nn(T (y) [ A) 6= ? then �rst, no blocking pair exists between

an agent in T (y) and an agent in Nn(T (y)[A) because w0 coincides with w for these agents

and (w; y) is t-stable and second, by using the contradiction assumption, 0 + w0t = ut � aqt
for all t 2 A and for all q 2 Nn(T (y)[A). Therefore, the outcome (w0; y0) is t-stable. Since

aj�x(j�) > 0, it follows that either uj� > 0 or ux(j�) > 0. Hence, the outcome (w0; y0) is a

t-stable extension of (w; y), which is a contradiction because (w; y) is an optimal t-stable

outcome.

Once we have shown that there exist some t� 2 A and q� 2 Nn(T (y) [ A) such that

wq� + ut� = ut� < aq�t�, we claim that such q� necessarily satis�es q� 2 T (x) and uq� > 0.

Otherwise, uq� = 0, in which case uq� + ut� < aq�t� by (16), and then fq�; t�g would block

(u; x), which is not possible because t� 2 T (x) and (u; x) is a t-stable outcome. Therefore,

q� 2 T (x)n(T (y) [ A). Since q� =2 A, we must have that p � x(q�) 2 T (x) \ T (y), so

up = wp (17)

because otherwise we should have that q� 2 T (x) \ T (y) according to Lemma 3, which

would be a contradiction. Furthermore, the fact that uq� > 0 implies that up < apq�, and

so wp < apq� by (17), which implies that fq�; pg blocks (w; y) (because wq� = 0), which is a

contradiction since p 2 T (y). Hence, x(j�) 2 T (x) \ T (y), and the proof is complete.

Lemma 7 Let (u; x) and (w; y) be optimal t-stable outcomes. Let j� 2 T (x)nT (y). Then

uj� = wj� = 0 and ux(j�) = wx(j�).

Proof. Denote k� � x(j�). If aj�k� = 0, then uj� = wj� = 0 and uk� = 0. If k� 2

T (x)nT (y) then wk� = 0. Otherwise, we cannot have that uk� 6= wk�, because Lemma 3
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would imply that j� 2 T (x) \ T (y), which would be a contradiction. Therefore, it is always

the case that ux(j�) = wx(j�).

Suppose now that aj�k� > 0. Under Lemma 6, k� 2 T (x)\T (y). Then, since j� =2 T (y) we

have that wj� = 0. In addition, we cannot have that uk� 6= wk�, according to Lemma 3 and

the assumption that j� 2 T (x)nT (y), so uk� = wk�. Now, suppose by way of contradiction

that uj� > 0. Then, uk� < aj�k�. Therefore, wj� + wk� = uk� < aj�k�, so fj�; k�g blocks

(w; y), which is a contradiction because k� 2 T (y) and (w; y) is a t-stable outcome. Hence,

uj� = wj� = 0 and ux(j�) = wx(j�), and the proof is complete.
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